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FOREWORD

This publication is an abridged version of the full report Fare Elasticity and its
Appilication to Forecasting Transit Demand. This study represents the first comprehensive
effort to estimate the fare elasticities of a large number of transit systems using monthly
data, and to test the applicability of the well known Simpson-Curtin formula in today’s
transit environments.

The study provides a general approximation of system-wide bus ridership loss
following a uniform fare increase (without changing the fare structure). It is not intended
to replace detailed fare elasticity estimates conducted for specific transit systems.

The authors of the report are Larry H. Pham, Ph.D., Director of Research and
Statistics, and Jim Linsalata, Manager of Research, American Public Transit Association.

The analysis has shown that the impact of fare changes on bus ridership, while
varying substantially among cities and between peak and off-peak hours, is more pronounced
than previously believed.

! American Public Transit Association, Research and Statistics Division, August 1991.
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ABSTRACT

Transit managers are under increasing
pressure to obtain sufficient fare revenues
to maintain high-quality service while
reducing dependence on government
assistance. They need an accurate formu-
la to estimate the impacts of fare changes
on transit ridership and fare revenues.
For years, these managers were given two
choices: constructing a fare elasticity mod-
el specific to their transit systems or apply-
ing the Simpson-Curtin formula which
postulates a fare elasticity of -0.33; ie., a
ten percent increase in fare would result
in a 3.3 percent decrease in transit patron-
age.

The models are usually costly and
time-consuming to construct, causing
delays in the implementation of fare chan-
ges. On the other hand, the 30-year-old
Simpson-Curtin formula is likely to be
inaccurate today. Further, it provides no
estimation of the varying fare impacts
between peak and off-peak hours, or
between large and small cities.

The objectives of this study are to
verify the Simpson-Curtin formula using
updated data and modern technologies,
and to provide a set of fare elasticity
estimates for bus service in various cities
during peak as well as off-peak hours.

An advanced econometric model, the
Autoregressive Integrated Moving Average
(ARIMA) model, was used for the estima-
tions. A special survey was conducted to
obtain ridership data 24 months before
and 24 months after each fare change for
52 transit systems. Monthly information
on other factors which may influence
ridership, including gasoline price, vehicle
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miles of service, labor strikes, etc., were
also collected. The purpose was to use
the model to isolate the impacts of the
fare changes from those caused by other
factors.

Findings

e On the average, a ten percent increase
in bus fares would result in a four per-
cent decrease in ridership [elasticity =
-0.40; the negative sign (-) indicates
that fare and ridership move in oppo-
site directions]. This shows that to-
day’s transit users react more severely
to fare changes than found by Simpson
and Curtin.

FARE ELASTICITY - BUS SERVICES

Average (all -0.40

buses, all cities)

o Transit riders in small cities are more
responsive to fare increases than those
in large cities. The fare elasticity for
bus service is found to be -0.36 for
systems in urbanized areas of 1 million
or more population. In urbanized areas
with less than 1 million people, the elas-
ticity is -0.43.

e Although the data for peak vs. off-peak
services are available for only six tran-
sit systems, the difference between the
fare elasticity levels is very clear: The
average peak-hour elasticity is -0.23
while the off-peak hour elasticity is -0.42,
indicating that peak-hour commuters
are much less responsive to fare chang-
es than transit passengers travelling
during off-peak hours.



Fare Elasticity Estimates - Bus Services

CITIES/AREAS WITH

More Than 1 Million Population | Less Than 1 Million Population

-0.36 -0.43

Source: American Public Transit Association, 1991
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INTRODUCTION

Fare elasticity measures the response
of transit patronage to fare changes. In a
simple mathematical sense, it is defined as
the ratio of percentage change in ridership
to a percentage change in fare. For exam-
ple, if a one percent increase in fare re-
sults in a half percent decrease in rider-
ship, the fare elasticity is -0.5. The nega-
tive sign (-) indicates that fare and rider-
ship move in opposite directions. If the
absolute value of fare elasticity is greater
than 1 (e.g., elasticity = -1.2), any increase
in fare would cause a larger decline in
ridership, resulting in a decrease of total
fare revenue. Alternatively, an absolute
fare elasticity of less than 1 implies that a
fare increase will result in increased reve-
nues. Knowledge of fare elasticity is
extremely important for transit managers,
as it provides information on the expected
ridership and farebox revenue resulting
from a proposed fare change.

The impact of fare on transit ridership
has been an unsettled issue for many
decades. While it generally is recognized
that a fare increase would result in some
ridership decrease, the magnitude of such
decrease is difficult to measure and can
vary greatly among transit systems. The
problem stems from the fact that ridership
does not respond to fare changes immedi-
ately. However, over a longer time peri-
od, the observed ridership changes may be
caused by factors other than the fare
change, resulting in an erroneous elasticity
estimation.

Dozens of fare elasticity studies have

been completed in the past decades.
Many suffer from serious analytical short-
comings rendering the results question-
able. Others are either overly complicated
or overly specific to individual transit
properties. For example, fare elasticities
are commonly estimated on specific routes
for specific transit systems. The results
cannot be generalized, and the usefulness
of the studies are limited to the particular
situations for which the studies are de-
signed. As a result, most smaller and
medium-size transit operators with limited
research resources have often made im-
portant fare decisions based on a simple
rule of thumb which assumes a fare elas-
ticity value of -0.33 for all transit routes
during all times of day. This method,
commonly referred to as the Simpson-
Curtin formula?, is inadequate to meet the
information needs for determining fare
policies.

This study attempts to establish a fare
elasticity estimation procedure that pre-
serves the Simpson-Curtin simplicity while
using the econometric methods and com-
puter technology of the 1990s. The pur-
pose of this study is two-fold. First, it
develops an advanced econometric model,
the transfer function model, to be applied
by transit systems in estimating fare elas-
ticities. Secondly, the results are used to
search for a pattern of fare elasticity be-
havior which enables those transit systems
without a modeling capability to arrive at
an approximate elasticity estimate by using
those of similar systems. To accomplish
these purposes, the fare elasticities of a

%John F. Curtin, “Effect of Fares on Transit Riding”, Highway Research Record, No. 213, 1968.
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sample of fifty-two transit systems are
estimated, with six systems having the
elasticities broken down to peak and off-
peak hours. The sample is selected such
that transit systems of different sizes,
serving large cities as well as small rural

areas are represented. Clearly, this meth-
od is not as desirable as applying the
model directly for elasticity estimation.
However, it is superior to indiscriminate
use of the Simpson-Curtin rule of thumb.

METHODOLOGY

Overview

Popular methods used for estimating
transit fare elasticity may be divided into
three broad categories:

n Preference Survey
» Shrinkage Analysis
» Econometric Studies

Preference Survey. Surveys are con-
ducted to obtain information on the in-
tended modes of travel under various
conditions. For example, survey respon-
dents are asked if they intend to commute
to work by car or transit if the bus fare is
raised by 25 cents, waiting time averages
10 minutes, and the parking cost is $60
per month. With a large number of re-
sponses on similar questions, it is possible
to statistically estimate the relative impor-
tance of the fare, service attributes and
other transportation factors to determine
the fare elasticities for various market
segments.

A major shortcoming of this approach
is that the respondents’ intentions may and
usually do differ from the actual events.
A Chicago study® found that this method
resulted in high elasticity estimates be-

cause individuals responding to the ques-
tionnaire had assumed that a car would be
available for their journey, whereas in
practice this was not always the case.

Shrinkage Analysis. This approach
measures fare elasticities by monitoring
the ridership levels prior to and after a
fare change. Fare elasticity is estimated
by computing the ratio of the percentage
change in ridership to percentage change
in fare.

This method is simple, but may not
provide accurate results because of un-
avoidable outside interferences. For
example, if a transit authority raises fare
on June 1, the observed decrease in rider-
ship may also be caused by fewer student
riders as the summer vacation begins.
Taking the ratio of ridership change to
fare change between May and June would
capture the effects of both the fare change
and the school year seasonality, resulting
in an erroneous fare elasticity estimate.
The June ridership may be compared to
the previous year’s June ridership to avoid
seasonal bias. The results of this compari-
son could be misleading since other fac-

3c. Phillips Cummings, et al., “Market Segmentation of Transit Fare Elasticities”, Transportation

Quarterly, July 1989, pp.418-19.



tors, such as changes in gas prices and
transit service, may have influenced rider-
ship during this twelve month span.

Econometric Studies. Most popular
among this group is regression analysis,
which uses historical data to estimate the
demand function for transit patronage.
Econometrics allows the relationship
between ridership and its influential fac-
tors such as fare, time of day, trip purpos-
es, cost of alternative modes, and socio-
economic characteristics of the population
to be expressed in mathematical forms.
The effects of fare changes on transit
patronage can then be isolated to arrive at
unbiased fare elasticity estimates. The
model may be a cross sectional analysis
which uses data over many geographic
areas for a given point in time, or a time
series analysis which models the variation
of fare and demand over time.

From a theoretical standpoint, the time
series analysis is a preferred method. The
cross sectional analysis, which does not
consider the effects of time, may not
adequately capture the responses of indivi-
duals or cities in response to fare changes
over time. Rather, it reflects how differ-
ent population segments behave at differ-
ent fare levels. For lack of better terms,
cross-sectional models are often consid-
ered as an indication of “long run adjust-
ments.” Thus, although cross-sectional
estimates have some advantage in fore-
casting structural changes in demand, it
cannot be used to measure the short run
responses of ridership to fare changes with
a reasonable degree of confidence unless
supporting time series information is
available. Nevertheless, data limitations
frequently necessitate independent use of
cross-sectional analysis in fare elasticity

research and ridership forecasting.

On the other hand, traditional time
series analysis also suffers drawbacks. This
approach commonly involves regression
analysis in which the ordinary least square
(OLS) method is used to fit transit de-
mand functions. Several crucial assump-
tions, including one requiring no serial
correlation present in the error term, are
usually violated, rendering the estimated
transit demand function biased and the
fare elasticities unreliable. This well-
known autocorrelation problem has been
an unresolved issue facing researchers for
decades.

The Transfer Function Model

The present study is a time series
analysis. However, it eliminates the auto-
correlation and other methodological
deficiencies by applying the transfer func-
tion model to estimate the transit demand
function and fare elasticities. This model
is an extended version of the Autoregres-
sive Integrated Moving Average (ARIMA)
or Box-Jenkins model, made popular
among researchers because of the revolu-
tionary advancement of computer technol-

ogy.

The transfer function model represents
a substantial improvement over the stan-
dard OLS-time series method in two ma-
jor aspects. First, it eliminates not only
the autocorrelation, but also the multicol-
linearity and inefficient estimates prob-
lems which are common in OLS models.
Secondly, it allows for a richer dynamic
structure in the relationship between the
dependent variable (transit demand) and
the explanatory variables (fare, services,
gas price, etc.). The model is able to



isolate the seasonal fluctuation of transit
ridership and capture the delayed effects
of ridership responses to fare changes.

When the function is expressed in
natural logarithm, the coefficient of the
fare variable measures the change in
ridership in response to fare change which
is, by definition, the fare elasticity. Mon-
thly time series data for fifty-two individu-
al transit systems are used to estimate
their transit demand functions.

Data Collection

A special survey was conducted to
obtain monthly data for four year periods,

Transfer Function Model Functional Form

where:

of people employed locally.

|t-k

otherwise.
e, = Disturbance term
t = Time period
k = Time lag

The transfer function model takes the following general form:

Ry = f (SLg . FCyy . ACy, , MCyy . ) + &,

R, = Transit ridership, measured by unlinked transit passenger trips.

SL = The service level, measured by revenue vehicle miles and/or revenue vehicle hours.

FC, = Transit cost, measured by average fare, deflated by the local consumer price indexes.
AC,, = Cost of major alternative modes, measured by gasoline price.

MC, = Market characteristics or the size of the transportation market, approximated by the number

= Intervention factors. These include, where appropriate, work stoppages, gasoline shortages
and other abrupt changes. The | variables are given the value of 1 during the event and 0

24 months before to 24 months after the
latest identified fare change date for each
transit system. The data requested includ-
ed monthly ridership, vehicle miles, vehi-
cle hours, basic adult cash fare, and total
farebox revenues during peak and off-peak
periods. Other information such as work
stoppages and variation in peak-hour
definitions were also collected. In addi-
tion, monthly data were gathered from
nationally published sources on local
consumer price indexes, gasoline prices,
and local employment for use in the
model.

In total, 189 survey questionnaires were
mailed to transit operators, and 79 were
returned before the internal deadline.




The response rate of 42 percent is consid-
ered very high for this type of survey as
many transit systems do net keep monthly
operating data. Twenty-eight returned
questionnaires were unusable, resulting in
52 useable questionnaires and a useable
response rate of 28 percent.

Model Application

The Time Transfer Function model
was applied to fifty-two transit systems in
cities of various sizes, ranging from 51,000
to nearly 10 million in population. In six
cases, for which data are available, the
transit demand functions were estimated
for peak hours as well as off-peak hours.

Generally, the economic behavior of
the transit riders is well predicted by the
model. The corrected coefficient of deter-
mination (R?) ranges from 0.51 to 0.97,
denoting that more than 50 percent and
up to 97 percent of the fluctuation in
transit ridership is explained by the model.
Twenty-five cases have a R? of 0.80 or
higher, and for seven cases, the model is
able to explain more than 90 percent of
the ridership variations. Figures 1, 2 and
3 depict examples of how the model per-
forms at different R2 levels.

The t-statistics indicate that the fare
elasticity coefficients are statistically sig-
nificant at the 90 to 99 percent confidence
level.

Figure 1. Actual vs. Estimated Unlinked Passenger Trips: R2=0.92 (Denver, Colo.)
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Figure 2. Actual vs. Estimated Unlinked Passenger Trips: R2=0.77 (Gretna, La.)
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Figure 3. Actual vs. Estimated Unlinked Passenger Trips: R2=0.52 (San Jose, Calif.)
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RESEARCH RESULTS

The fare elasticities of bus service for
fifty-two transit systems under study are
presented in Table 1 (all day average) and
Table 2 (peak/off-peak differential).
Briefly, the results are as follows:

e The all-hour fare elasticity for all
systems averages at -0.40, notably
higher than the Simpson-Curtin
formula.

e The elasticity levels of individual
transit systems, however, vary wide-
ly, from -0.12 for Riverside, Calif.
to -0.85 for Toledo, Ohio. The
local population work places, in-
come, driving conditions, transit
services, etc. cause different levels
of sensitivity of travellers to fare
changes. In any event, the large
variation clearly illustrates the
danger of applying the Simpson-
Curtin rule to all areas.

The average elasticity for large
cities (more than 1 million popula-
tion) is much smaller (in absolute
value) than the smaller cities, indi-
cating that transit users in large
cities are less sensitive to fare
increases.

The relatively inelastic transit de-
mand with respect to fare of large
cities holds true for both peak and
off-peak travelling. However, the
differences in off-peak hours are
less pronounced.

The elasticity during off-peak hours
is about twice as high as that dur-
ing peak hours for both population
groups. This finding is consistent
with existing studies.



Table 1. Transit Fare Elasticity Estimates of 52 Transit Systems

ﬁ

URBAN AREA FARE FARE ELAST
CITIES POPULATION ELASTICITY T-STAT R SQUARED GROUP MEANS
BUS SERVICES IN URBANIZED AREAS WITH MORE THAN 1 MILLION POPULATION
1 Los Angeles, CA 9,479,436  -0.231 5.83 0.87
2 Des Plaines, IL 6,779,799  -0.117 1.75 0.73
3 Detroit, MI 3,809,327  -0.247 3.18 0.92
4 San Francisco, CA 3,190,698  -0.151 2.28 0.88
5 Alexendria, VA 2,763,105  -0.412 2.29 0.91
6 Dallas, TX 2,451,390  -0.134 1.77 0.91
7 Baltimore, MD 1,755,477  -0.495 3.40 0.78
8 San Diego, CA 1,704,352  -0.270 1.85 0.66
9 Oceanside, CA 1,704,352  -0.350 2.64 0.68
10 Atlants, GA 1,613,357  -0.277 2.72 0.51
11 Phoenix, AZ 1,409,279  -0.321 1.86 0.66 -0.361
12 Seattle, WA 1,391,535  -0.266 2.35 0.86 €0.154)*
13 Everett, WA 1,391,535  -0.429 1.82 0.51
14 Denver, €O 1,352,070  -0.562  20.60 0.92
15 San Jose, CA 1,243,952 -0.460 2.17 0.52
16 Cincinnati, OH 1,123,412  -0.738 1.98 0.80
17 Kensas City, M0 1,097,793  -0.511 4.32 0.92
18 Gretna, LA 1,078,299  -0.354 3.10 0.77
19 Portlend, OR 1,026,144  -0.387 4.30 0.64
20 Buffalo, NY 1,002,285  -0.503 3.27 0.84
BUS SERVICES IN URBANIZED AREAS WITH LESS THAN 1 MILLION POPULATION
21 Sacramento, CA 796,266 -0.162 7.58 0.84
22 Riverside, CA 705,175  -0.119 3.96 0.76
23 Honolulu, HI 582,463  -0.652 5.99 0.80
26 St. Petersburg, FL 520,912  -0.478 3.19 0.74
25 Nashville, TN 518,325  -0.527 3.25 0.82
26 Richmond, VA 491,627  -0.624 2.43 0.70
27 Albany, NY 490,015  -0.456 3.42 0.57
28 West Palm Beach, FL 487,044  -0.605 2.92 0.86
29 Toledo, OH 485,440  -0.855  29.54 0.97
30 El Paso, TX 454,159  -0.294 2.54 0.50
31 Tacoma, WA 402,077  -0.432 4.70 0.63
32 Allentown, PA 381,736 -0.747 2.60 0.70
33 Grand Rapids, MI 374,744 -0.430 6.89 0.84
34 Flint, MI 331,931  -0.585 2.98 0.87
35 Fresno, CA 331,551 -0.311 4.99 0.74
36 Sarasota, FL 305,431 -0.214 2.67 0.68
37 Chattanooga, TN 301,515  -0.341 4.75 0.88 -0.430
38 Spokane, WA 266,709  -0.527 3.15 0.69 €0.189)*
39 Fort Wayne, IN 236,479  -0.116 1.77 0.90
40 South Bend, IN 226,331  -0.261 4.58 0.66
41 Madison, WI 213,675  -0.401 2.34 0.83
42 Eugene, OR 182,495  -0.184 1.89 0.84
43 Lincoln, NE 173,550  -0.500 3.26 0.55
4 South Daytona, FL 170,749  -0.423 2.88 0.61
45 Binghamton, NY 161,132 -0.704  10.95 0.93
46 Lancaster, PA 157,385 -0.428 2.94 0.79
47 Appleton, Ml 142,151  -0.255 2.86 0.61
48 springfield, M0 139,030  -0.481 8.57 0.65
49 Williamsport, PA 58,650  -0,299 2.52 0.75
50 Oshkosh, WI 52,958  -0.167 3.09 0.86
51 State College, PA 51,298  -0.642 4.57 0.89
52 Boone, NC Non-UzA  -0.528 5.66 0.81
ALL SYSTEMS: -0.403
€0.179)*
* - Standard Deviation
Source: American Public Transit Association
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Table 2. Fare Elasticity: Peak and Off-Peak Travel

Oft
Urbanized Area Peak Peak Population
Binghamton, NY' 0.26 161,312
Spokane, WA 0.32 -0.73 266,709
Grand Rapids, Mi 0.29 0.49 374,744
Sacramento, CA? 0.22 0.14 796,266
GROUP | AVERAGE® 0.27 [0.04] -0.45 [0.30) 1 million and less
Portland, OR/WA -0.20 -0.58 1,026,144
San Francisco, CA* -0.14 -0.31 3,190,698
Los Angeles, CA 0.21 0.29 9,479,436
GROUP Il AVERAGE® 0.18 [0.04] -0.39 [0.16) 1 million and more
ALL SYSTEMS AVERAGE® 0.23 [0.06] -0.42 [0.22)
Notes: 1. This system enacted a peak period fare increase in January 1988 and an off-peak period fare decrease in
February 1987.
2. Light rail initiated March 1987, which was during the observation period.
3. The standard deviations of the group and total means are contained in square brackets.
4. Transit system serves Marin and Sonoma counties.




